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Abstract: The purpose was to design and validate a battery of physical tests, called EFEPD-
1.0, adapted to assess functionality in people with disabilities. In addition, we sought to
analyze the validity and reliability of this battery both for the total group and differen-
tiated by sex. A total of 43 adults with disabilities (32 women and 11 men) participated
(57.11 ± 10.12 years). The battery was composed of five blocks of functionality: neuromus-
cular, combined actions, acceleration, balance, and cardiovascular. The neuromuscular
functionality was measured by the vertical and horizontal jump test using the optical sys-
tem (Opto Jump Next®, Microgate, Bolzano, Italy) as well as the Hand Grip (HG) test using
a (5030J1, Jamar®, Sammons Preston, Inc, Nottinghamshire, UK) hand dynamometer. The
combined actions and balance functionality were assessed with the Time Up and Go (TUG)
test, the 30 s Chair Stand (30CTS) test, and the One-Leg Stance (OLS) test measured by a
manual stopwatch (HS-80TW-1EF, Casio®, Tokyo, Japan). The acceleration functionality
was evaluated through 20 m sprints and the 505 change of direction (COD505) test, using
the (Microgate, Witty®, Bolzano, Italy) photocell system. The cardiovascular functionality
was evaluated with the Six-Minute Walking Test (6MWT), where heart rate was monitored
using the (Polar Team Sport System®, Polar Electro Oy, Kempele, Finland), and additional
walking mechanics were recorded with Stryd (Stryd Everest 12 Firmware 1.18 Software 3,
Stryd Inc., Boulder, CO, USA). The results showed that the intraclass correlation coefficients
(ICCs) ranged from moderate to almost perfect (ICC = 0.65–0.98) between test repetitions.
Some tests could significantly differentiate (p < 0.05) men and women, highlighting better
neuromuscular capacity in men and better balance in women. The correlations between
tests showed significant convergent validity. The Evaluation of Functionality in the Dis-
abled Population (EFEPD-1.0) battery not only consistently measures functional capacities
in people with disabilities, but it can also discriminate between different subgroups within
this population.

Keywords: physical condition; functionality; validity; repeatability

Sensors 2025, 25, 1813 https://doi.org/10.3390/s25061813

https://doi.org/10.3390/s25061813
https://doi.org/10.3390/s25061813
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7924-6270
https://orcid.org/0000-0002-8617-4567
https://orcid.org/0000-0002-8366-8932
https://orcid.org/0000-0002-8086-4778
https://orcid.org/0000-0001-7004-5341
https://orcid.org/0000-0002-8965-5024
https://doi.org/10.3390/s25061813
https://www.mdpi.com/article/10.3390/s25061813?type=check_update&version=2


Sensors 2025, 25, 1813 2 of 16

1. Introduction
Disability, understood as a limitation in bodily functionality or structure that results

in difficulties in carrying out daily tasks and participating fully in society [1], is a global
reality that affects a large number of people. According to the World Health Organization
(WHO), approximately 15% of the world’s population lives with some type of disability [2].
Although the impact of disability can vary considerably across continents and nations, in
the European Union, the average prevalence of people with disabilities is 24% of the total
population, reaching figures of up to 39.5% in some countries [3]. Although the percent-
age of the population with disabilities can also vary according to the type of disability,
age, gender, and other factors, it seems clear that it has a high incidence in the world
population [4].

It has been described that people with disabilities have reduced health due to the
impact of the disability itself [5] and to their lifestyle [6]. Different studies have shown that
people with disabilities have worse physical [7] and psychological [8] health compared
to the non-disabled population. While physical activity (PA) has been described as a key
factor for improving health and well-being in the population with disabilities [9], a lack
of PA or a high level of sedentary lifestyle is a common problem in this population [6]. In
this sense, there is evidence that people with disabilities have a lower level of PA practice
and a longer time of physical inactivity than people without disabilities [5,6]. Considering
that a sedentary lifestyle can have negative health consequences, including an increased
risk of cardiovascular disease and diabetes, a reduction in quality of life [10], and even
psychological and social alterations [11], it seems important to promote PA in people with
disabilities as a way to improve their health and well-being.

One of the barriers to the practice of PA that people with disabilities face is their own
disability and a low level of physical fitness (PF) [12]. PF, understood as an individual’s
ability to perform the physical activities of daily living with vigor and efficiency, has been
defined as a biological marker of health status, as well as a powerful predictor of longevity
and quality of life [13]. Along these lines, different studies have focused on analyzing the
relationship between the components of PF and the practice of PA, reporting that PA seems
to be a good tool to improve these markers and therefore improve health [14,15]. Therefore,
improving the PF of people with disabilities may be one of the priorities to increase PA
practice and improve health.

Although the analysis of PF in people with disabilities has been carried out in multiple
studies, in both sports performance [16] and health [17], Alcántara-Cordero et al. [18]
highlight the lack of standardized tests and batteries to assess PF in people with disabilities.
Thus, in the scientific literature, different batteries of tests have been used to determine
the PF of people with disabilities, but there is no consensus between the functional test
batteries or the tests that make them up [19]. Moreover, many of them are adaptations of
non-disabled population tests [20], with little evaluation of validity and reliability [19] for
applying in people with disabilities. For example, the EUROFIT battery has been modified
to adapt it to people with intellectual disabilities and has become one of the most widely
used batteries in this population, but due to the difficulty in understanding the instructions
and performing some of the proposed exercises, some studies have reported limitations
in the applicability of this type of battery in that population [18]. Similarly, the Assessing
Levels of Physical Activity (ALPHA-Fit) batteries, modified to assess the physical condition
of children and adolescents with intellectual disabilities, and the Brockport Physical Fitness
Test (BPFT) battery used in people with disabilities to assess functional capacity and health-
related physical performance have significant limitations [21,22]. These limitations are
mainly related to the study sample and to the applicability of the tests. In fact, the samples
of the validation studies of these batteries are made up of people with a single type of
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disability [18,22], or the age range of the samples is specific to children or older adults [22].
Moreover, some of the suggested tests have not been modified and, therefore, they cannot
be implemented adequately [18]. When the tests have been adapted to the population
with disabilities, the psychometric tests of validity and reliability have not been sufficiently
evaluated [19]. In this sense, it seems necessary to design a battery of tests for a wide
spectrum of people with disabilities or limited functionality and to determine their validity
and reliability.

Therefore, the objectives of the present study were (1) to design a battery of tests to
measure PF adapted to older adults with disabilities or functional limitations and (2) to
analyze the intra-session repeatability, and the convergent and discriminant validity of the
proposed battery.

2. Materials and Methods
2.1. Participants

This study involved 43 adults (57.11 ± 10.12 years; range: 28–75), with some disability
or limitation of functionality; 31 of them were women (56.43 ± 9.64 years; range: 28–75)
and 11 were men (59.09 ± 11.69 years; range: 32–71). A total of 51.2% of the participants
had a functional limitation as a result of having suffered from cancer (CD), 27.9% had
a physical disability (FD), 16.3% had an intellectual disability (ID), and 4.7% did not
know/or want to answer what type of disability or limitation of functionality they had. The
inclusion criteria for participating in this study were the following: (1) having an officially
diagnosed functional limitation, pathology, or disability, (2) being regular users of some
type of supervised and organized physical exercise or sport program, and (3) taking the
complete battery of tests. Before starting the research, this project was approved by the
Ethics Committee for Research with Human Beings (CEISH, code M10_2020_244) of the
University of the Basque Country (UPV/EHU) and followed the requirements established
in the Declaration of Helsinki in 2013.

2.2. Procedure

Before starting with the Evaluation of Functionality in the Disabled Population
(EFEPD-1.0) battery, all the participants performed a standardized warm-up that con-
sisted of 3 min of low-intensity movement, 4 progressive sprints of 20 m, and 4 sprints of
10 m with 2 changes of direction in each of them. The EFEPD-1.0 test battery was subdi-
vided into 5 blocks of functionality and followed this order: neuromuscular functionality,
functionality in combined action, functionality in acceleration, functionality in balance, and
cardiovascular functionality, for which flexible sensors were used to record each test [23].
Each participant attended a single session to perform the battery. The sessions were carried
out in small groups of between 4 and 8 people. The rest between tests was 120 s, enough
time to give the pertinent explanations and provide a practical example. The participants
performed two repetitions (R1 and R2) in each of the tests, except for the cardiovascular
function test, in which a single attempt was made. In all the test sessions, the participants
were informed that in each of the tests they should exert themselves to the maximum as
long as they did so safely.

2.3. Measurement
2.3.1. Neuromuscular Functionality

Vertical jump: In order to measure the functionality of the participants’ vertical jump,
the bipodal (CMJ) and unipodal countermovement jump tests were used, both with the
right leg (CMJRight) and with the left leg (CMJLeft), previously described in the literature for
people with disabilities [24]. In all cases, the participants were placed in an upright position
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in order to perform the bipodal or unipodal jumping protocol with established counter-
movement. The participants freely chose the degree of flexion [25] and their hands had to
stay on their hips throughout the jump [26]. Each participant performed two maximum
attempts of each type of jump, with 30 s of rest between the trials. In all the attempts, verbal
instructions and stimuli were provided for better performance. An optical data collection
system (Opto Jump Next®, Microgate, Bolzano, Italy) was used to measure the height of
the jump.

Horizontal jump: To determine the functionality of the horizontal jump, the Standing
Broad Jump (SBJ) test, previously described for people with disabilities, was used [27].
The participants positioned themselves behind a set line and performed a jump with both
legs together on the horizontal axis as far as they could. In the execution of the test, the
participants were allowed to use their arms to increase the jumping distance. All the
participants performed two attempts with 30 s of rest between the trials. In all the attempts,
verbal instructions and stimuli were provided for better performance. The jumped distance
was measured from the starting line to the support of the furthest heel [28].

Upper extremity strength: In order to determine the isometric strength of the upper
limbs, the Hand Grip (HG) test was used, previously used in people with disabilities [18].
The participants performed the test sitting in a chair with their right arm fully extended
and without touching the chair [29], having to exert the highest isometric grip force for
5 s. A portable hydraulic hand dynamometer (5030J1, Jamar®, Sammons Preston, Inc.,
Nottinghamshire, UK) was used to measure the HG strength. Each participant performed
two attempts with each of the hands (right and left) with 10 s of rest between each trial.

2.3.2. Functionality in Combined Actions

Displacement from a sitting position: In order to determine functionality in standing,
moving, turning, and sitting, the Time Up and Go (TUG) test was used, previously used
in the population with disabilities [18]. The participants began the test sitting in a chair,
with their feet in contact with the ground and their hip and knee joints bent to about 90◦.
At the voice saying “Go”, the participants got up and moved as quickly as possible to a
cone located 3 m away; they surrounded it and returned to the starting position. Each
participant performed two attempts with a 30 s break between each trial [18]. The time(s)
taken to perform the test was measured using a manual stopwatch (HS-80TW-1EF, Casio®,
Tokyo, Japan).

Lower limb functionality: In order to determine the functionality of the lower limbs,
the 30 s Chair Stand test (30CTS) was used [30]. A fixed-height (45 cm) armless chair was
used for the test, in which the participants had to sit in the center without leaning on the
backrest, with their hands on opposite shoulders and their feet in contact with the floor [31].
Starting from the mentioned position, upon hearing the “Go” signal, the participants had
to get up and sit down to complete the greatest number of cycles for 30 s. The number of
cycles completed during the test was counted. The test was repeated twice with a rest time
of 30 s.

2.3.3. Functionality in Acceleration

Straight-line acceleration: The 20 m acceleration test, previously used in the popula-
tion with disabilities, was used to measure functionality in straight-line acceleration [32].
The participants stood at the starting line and covered, in the shortest possible time, a
distance of 20 m in a straight line. The starting line was set 0.5 m behind the first pho-
tocell (Microgate, Witty®, Bolzano, Italy) and the stopwatch was automatically activated
when the participants passed the first gate at the 0.0 m mark [29]. Each participant per-
formed two maximum accelerations with a rest of 120 s between each trial [33]. In all the
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attempts, verbal instructions and stimuli were provided for the participants to perform
the accelerations at maximum intensity. The split times of 0–10 m, 0–20 m, and 10–20 m
were recorded.

Acceleration with change of direction: In order to determine the functionality of
acceleration with change of direction, the 505 change of direction test (COD505) was used.
This test has been previously used in the population with disabilities [34]. The participants,
placed on the starting line 10 m from the photocell (Microgate, Witty®, Bolzano, Italy),
sprinted forward to a line 5 m ahead of the photocell, pivoted 180◦, and accelerated for
another 5 m to cross the gate again. The time was activated and stopped automatically
when the participants crossed the photocell gate. Each of the participants completed two
trials with a 120s rest period between them.

2.3.4. Functionality in Balance

Static balance: In order to determine balance functionality, the One-Leg Stance (OLS)
test was used [35]. The participants were placed in an upright position on one leg and
with their arms crossed over their chest, with both the right leg (OLSRight) and the left leg
(OLSLeft). The timer started when the participant lifted their foot off the ground. The test
ended when the participant performed any of the following actions: 1. uncrossing or using
the arms to maintain balance; 2. touching the ground with the foot raised; 3. moving the
foot that supported the weight of the body; or 4. exceeding the maximum duration of 20 s.
Two trials were performed for each leg (OLSRight and OLSLeft) with 30 s of rest between the
trials [28].

2.3.5. Cardiovascular Functionality

Six-Minute Walking Test (6MWT): The 6MWT was used to measure cardiovascular
functionality [36]. The test was conducted in pairs, with the aim of covering the maximum
possible distance within a marked rectangle using cones over a duration of 6 min [37]. The
distance per lap was 50 m, and the total distance covered was recorded by a lap-counting
system. Additionally, heart rate monitors (Polar Team Sport System®, Polar Electro Oy,
Kempele, Finland) were used throughout the test to monitor the cardiac response (maxi-
mum heart rate [HRmax] and average heart rate [HRavg]) [38]. Stryd devices (Stryd Everest
12 Firmware 1.18 Software 3, Stryd Inc., Boulder, CO, USA) were also employed to record
mechanical walking variables, such as the relative maximum power (Pmaxrel), relative
average power (Pavgrel), relative minimum power (Pminrel), absolute maximum power
(Pmaxabs), absolute average power (Pavgabs), absolute minimum power (Pminabs), cadence,
stride length, pace, ground contact time (GCT), and total distance covered (Dist.Stryd) [39].
Immediately following the test, the participants reported their muscular (RPEmus) and
respiratory (RPEres) values of subjective perception of effort using the Foster 0–10 scale [40],
and the tympanic temperature was measured (ThermoScan® IRT 4520 5, Braun GmbH,
Kronberg, Germany) [41].

2.4. Statistical Analysis

The results are presented as the mean and standard deviation (SD). The Shapiro–
Wilk and Levene tests were conducted to assess the normality and homoscedasticity of
the data, respectively. The intra-session repeatability of the tests was evaluated using
the intra-subject coefficient of variation (CV), the T-Student test for related samples, the
Wilcoxon signed-rank test for non-parametric variables, the calculation of the magnitudes
of differences through Cohen’s effect size (ES) [42] or the rank-biserial correlation (rb) for
non-parametric variables, the Pearson (r) or Spearman (Rho) correlation coefficients, and
the ICC (mixed-model, two-way, single measures, absolute agreement). To determine the
differences between men and women, the independent samples T-Student test or the Mann–
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Whitney test for non-parametric variables were used. The calculation of the magnitudes
of differences was analyzed through the ES or the probability of superiority (PS) for non-
parametric variables [43]. For correlations among variables from the tests belonging to
the blocks of neuromuscular functionality, combined action functionality, acceleration
functionality, balance functionality, and the variables from the 6MWT, the Pearson (r) or
Spearman (Rho) correlation coefficients were used. The qualitative interpretation of the
ES values was as follows: d < 0.25, trivial; d = 0.25–0.50, small; d = 0.50–1.00, moderate; and
d > 1.00, large [42]. The qualitative interpretation for the rank-biserial correlation (rb) values
used the following scale: trivial, rb < 0.10; small, rb = 0.10–0.29; moderate, rb = 0.30–0.49;
and large, rb > 0.50 [44]. The interpretation of the PS values used the following scale:
trivial, PS = 0–0.50; small, PS = 0.50–0.56; moderate, PS = 0.56–0.71; and large, PS > 0.71.
The interpretation of the correlation results followed this categorization: r < 0.1, trivial;
r = 0.1–0.3, small; r = 0.3–0.5, moderate; r = 0.5–0.7, large; r = 0.7–0.9, very large; and r > 0.9,
nearly perfect [45]. The ICC was interpreted according to previously established guidelines
as low for values below 0.50, moderate for values between 0.50 and 0.75, good for values
between 0.75 and 0.90, and excellent for values above 0.90 [46]. The data were analyzed
using the Statistical Package for Social Sciences (SPSS version 28, IBM Corporation, Armonk,
NY, USA). Statistical significance was set at p ≤ 0.05.

3. Results
Table 1 shows the descriptive results and reliability values of each of the variables

analyzed in the EFEPD-1.0 battery tests. Both the ICC (ICC = 0.65–0.98) and the r/Rho
(r/Rho = 0.67–0.98) obtained between R1 and R2 in all the variables analyzed were moderate–
almost perfect. In all the variables, except for the CMJRight, OLSLeft, and OLSRight, the CVs
of the values between R1 and R2 were less than 11.36 ± 0.19%. However, significant
differences (p < 0.05; rb = −0.85–0.70, large) were observed between the R1 and R2 values in
the HGRight, HGLeft, TUG, 30CTS, 0–10 m, 0–20 m, 10–20 m, COD505, OLSLeft, and OLSRight.

Table 2 shows the results obtained by the participants in the EFEPD-1.0 battery dif-
ferentiated according to sex. The group of men obtained better results compared to the
group of women in the CMJLeft (p = 0.03; ES = 0.77, moderate), in the HGRight (p = 0.000;
PS = 0.09, trivial), and in the HGLeft (p = 0.000; PS = 0.09, trivial). However, the group of
women obtained better values in the OLSRight test (p = 0.017; PS = 0.26, trivial) and higher
values in the HRmax (p = 0.038; ES = 0.75, moderate), in the HRavg (p = 0.039; ES = 0.75,
moderate), in the Pminrel (p = 0.000; ES = 1.39, large), in the Pavgrel (p = 0.010; PS = 0.01,
trivial), and in the Pminabs (p = 0.004; ES = 1.07, large), compared to the group of men. In
the rest of the variables analyzed, no significant differences were observed between the
two groups.

Regarding the correlations between the different tests, the results of the present study
showed a moderate to almost perfect correlation between the acceleration tests, the jump tests,
and the TUG (Rho = −0.772–0.880; p ≤ 0.001). Figure 1 shows the results of the correlations
between the CMJ and the TUG (Figure 1A), the COD505 and the TUG (Figure 1B), and the
CMJ and the COD505 (Figure 1C). On the other hand, the results of the HGLeft, HGRight,
and OLSLeft tests showed significant correlations with the results of the acceleration and
jump tests (Rho = −0.543–0.543; p ≤ 0.05). However, the OLSRight did not show statistically
significant correlations with the jump tests.
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Table 1. Descriptive results and test–retest reliability of the tests of the Functionality Evaluation in Population with Disabilities (EFEPD-1.0) battery.

Best Record R1 R2 CV Student-T/Wilcoxon
p Value

ES
d/rb

ICC r/Rho

Neuromuscular
functionality

CMJ (cm) 13.12 ± 6.52 12.37 ± 6.81 12.71 ± 6.25 11.59% ± 0.23% 0.16 −0.22 0.97 *** 0.98 ***
CMJRight (cm) 5.58 ± 3.71 4.99 ± 3.76 5.21 ± 3.52 20.27% ± 0.31% 0.14 −0.29 0.93 *** 0.94 ***
CMJLeft (cm) 5.19 ± 3.52 4.70 ± 3.28 4.89 ± 3.30 10.18% ± 0.10% 0.6 −0.1 0.93 *** 0.96 ***

SBJ (cm) 0.92 ± 0.41 0.89 ± 0.39 0.87 ± 0.39 11.36% ± 0.19% 0.46 0.11 0.92 *** 0.92 ***
HGRight (kg) 29.57 ± 9.62 26.97 ± 8.20 29.63 ± 9.44 6.46% ± 0.04% <0.001 *** −0.58 0.91 *** 0.97 ***
HGLeft (kg) 27.61 ± 8.66 26.14 ± 8.44 27.27 ± 8.35 4.79% ± 0.04% <0.001 *** −0.85 0.96 *** 0.97 ***

Functionality in
combined actions

TUG (s) 5.15 ± 1.51 5.65 ± 2.02 5.34 ± 2.04 6.87% ± 0.07% <0.001 *** 0.65 0.81 *** 0.96 ***
30CTS (n◦) 14.79 ± 4.08 13.76 ± 4.15 14.39 ± 3.66 7.20% ± 0.07% <0.001 *** 0.7 0.83 *** 0.93 ***

Functionality in
acceleration

0–10 m (s) 3.59 ± 1.62 3.79 ± 1.83 3.63 ± 1.64 4.61% ± 0.05% 0.01 ** 0.49 0.96 *** 0.95 ***
0–20 m (s) 6.94 ± 3.43 7.30 ± 3.68 7.00 ± 3.49 3.66% ± 0.03% <0.001 *** 0.6 0.98 *** 0.99 ***

10–20 m (s) 3.33 ± 1.81 3.51 ± 1.88 3.36 ± 1.86 4.67% ± 0.05% <0.001 *** 0.57 0.98 *** 0.98 ***
COD505 (s) 4.43 ± 1.41 4.68 ± 1.68 4.62 ± 1.67 5.37% ± 0.06% 0.04 * 0.36 0.90 *** 0.91 ***

Functionality in balance OLSRight (s) 15.52 ± 6.70 13.06 ± 7.60 14.81 ± 7.26 23.28% ± 0.33% 0.05 * −0.63 0.71 *** 0.73 ***
OLSLeft (s) 15.95 ± 6.42 12.96 ± 7.21 15.48 ± 6.96 23.27% ± 0.32% 0.01 ** −0.46 0.65 *** 0.67 ***

Cardiovascular
functionality

Dist. (m) 564.91 ± 101.64
HRmax (pp/m) 137.55 ± 24.68
HRavg (pp/m) 123.76 ± 24.68

RPEmus 3.46 ± 2.10
RPEres 3.00 ± 1.41

Ttimp (C◦) 36.26 ± 0.63
Pmaxrel (W/kg) 2.12 ± 0.85
Pminrel (W/kg) 1.33 ± 0.57
Pavgrel (W/kg) 1.80 ± 0.74

Pmaxabs (W) 147.07 ± 37.88
Pminabs (W) 92.44 ± 29.94
Pavgabs (W) 123.90 ± 32.29

Cadence (p/min) 131.77 ± 13.40
Stride length (m) 0.73 ± 0.10
Pace (min:s/km) 10:55 ± 3:01

GCT (ms) 708.67 ± 308.61
Dist.Stryd (m) 592.163 ± 102.64

Legend: R1 = first record; R2 = second record; CV = coefficient of variation; ES = effect size; d = Cohen’s d; rb = rank-biserial correlation coefficient; ICC = intraclass correlation coefficient;
r = Pearson’s correlation; Rho = Spearman’s correlation; CMJ = Countermovement Jump; SBJ = Standing Broad Jump; HG = Hand Grip; TUG = Time Up and Go; 30CTS = 30 s Chair
Stand; COD505 = change of direction 505; OLS = One-Leg Stance; Dist. = distance covered by lap count; HRmax = maximum heart rate; HRavg = average heart rate; RPEmus = Rate
of Perceived Exertion muscular; RPEres = Rate of Perceived Exertion respiratory; Ttimp = tympanic temperature; Pmaxrel = absolute maximum power; Pminrel = relative minimum
power; Pavgrel = relative average power; Pmaxabs = absolute maximum power; Pminabs = absolute minimum power; Pavgabs = absolute average power; GCT = ground contact time;
Dist.Stryd = distance covered recorded by Stryd; Italics = parametric; * p ≤ 0.05; ** p ≤ 0.01; and *** p ≤ 0.001.
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Table 2. Differences between the group of men and women in each of the tests of the Functionality
Evaluation of the Population with Disabilities (EFEPD-1.0) battery.

Men Women CV
Student-T/U-

Mann
p Value

ES
d/PS

Neuromuscular
functionality

CMJ (cm) 16.22 ± 8.02 12.06 ± 5.67 20.77% 0.07 0.66
CMJRight (cm) 6.76 ± 4.36 5.18 ± 3.44 18.65% 0.23 0.43
CMJLeft (cm) 7.12 ± 3.80 4.53 ± 3.21 31.43% 0.03 * 0.77

SBJ (cm) 106.78 ± 51.03 86.62 ± 36.11 14.74% 0.16 0.50
HGRight (kg) 41.56 ± 8.91 25.45 ± 5.59 34.37% <0.001 *** 0.09
HGLeft (kg) 38.94 ± 8.49 23.71 ± 4.12 34.01% <0.001 *** 0.09

Functionality in
combined actions

TUG (s) 5.11 ± 1.32 5.17 ± 1.58 0.81% 0.80 0.47
30CTS (n◦) 15.09 ± 5.28 14.69 ± 3.67 1.92% 0.78 0.10

Functionality in
acceleration

0–10 m (s) 3.21 ± 1.12 3.72 ± 1.75 10.51% 0.31 0.39
0–20 m (s) 6.06 ± 2.41 7.25 ± 3.70 12.57% 0.30 0.39

10–20 m (s) 2.85 ± 1.30 3.50 ± 1.94 14.35% 0.30 0.39
COD505 (s) 4.14 ± 1.10 4.53 ± 1.50 6.48% 0.42 0.42

Functionality in
balance

OLSRight (s) 11.22 ± 7.21 17.00 ± 5.94 28.96% <0.01 ** 0.26
OLSLeft (s) 13.58 ± 8.26 16.76 ± 5.58 14.82% 0.20 0.39

Cardiovascular
functionality

Dist. (m) 563.43 ± 111.08 565.42 ± 100.08 0.25% 0.78 0.47
HRmax (pp/m) 124.36 ± 26.84 142.09 ± 22.58 9.41% 0.04 * 0.75
HRavg (pp/m) 111.54 ± 26.74 127.96 ± 20.23 9.70% 0.04 * 0.75

RPEmus 4.27 ± 2.49 3.19 ± 1.92 20.57% 0.12 0.68
RPEres 2.64 ± 1.28 3.12 ± 1.45 11.99% 0.35 0.41

Ttimp (C◦) 36.20 ± 0.71 36.28 ± 0.61 0.14% 0.71 0.56
Pmaxrel (W/kg) 1.67 ± 0.48 2.28 ± 0.89 21.87% 0.08 0.32
Pminrel (W/kg) 0.82 ± 0.23 1.50 ± 0.55 41.67% <0.001 *** 1.39
Pavgrel (W/kg) 1.32 ± 0.38 1.96 ± 0.76 27.73% 0.01 ** 0.01

Pmaxabs (W) 141.51 ± 32.19 148.99 ± 39.94 3.64% 0.58 0.20
Pminabs (W) 70.71 ± 18.93 99.92 ± 29.56 24.21% <0.01 ** 1.07
Pavgabs (W) 111.62 ± 25.45 128.12 ± 33.64 9.73% 0.15 0.52

Cadence (p/min) 127.73 ± 12.35 133.16 ± 13.66 2.94% 0.18 0.41
Stride length (m) 0.78 ± 0.11 0.72 ± 0.08 8.44% 0.06 0.58
Pace (min:s/km) 10:18 ± 1:50 11:08 ± 3:20 5.44% 0.94 0.49

GCT (ms) 793.83 ± 293.36 679.40 ± 312.76 10.98% 0.26 0.61
Dist.Stryd (m) 604.22 ± 106.07 588.01 ± 102.83 1.98% 1.00 0.50

Legend: CV = coefficient of variation; ES = effect size; d = Cohen’s d; PS = probability of superiority;
CMJ = Countermovement Jump; SBJ = Standing Broad Jump; HG = Hand Grip; TUG = Time Up and Go;
30CTS = 30 s Chair Stand; COD505 = change of direction 505; OLS = One-Leg Stance; Dist. = distance covered by
lap count; HRmax = maximum heart rate; HRavg = average heart rate; RPEmus = Rate of Perceived Exertion
muscular; RPEres = Rate of Perceived Exertion respiratory; Ttimp = tympanic temperature; Pmaxrel = absolute
maximum power; Pminrel = relative minimum power; Pavgrel = relative average power; Pmaxabs = absolute
maximum power; Pminabs = absolute minimum power; Pavgabs = absolute average power; GCT = ground contact
time; Dist.Stryd = distance covered recorded by Stryd; Italics = parametric analysis; * p ≤ 0.05; ** p ≤ 0.01; and
*** p ≤ 0.001.

Regarding the correlations between the variables recorded in the 6MWT and the rest
of the tests (Figure 2), the results showed a high–very high correlation between the distance
covered (both Dist. and Dist.Stryd) and the acceleration tests, the jump tests (Figure 2A),
the TUG test (Figure 2B), and the balance tests (r/Rho = −0.862 to 0.763; p ≤ 0.01). No
significant correlation was observed between the RPE and the rest of the tests.
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In reference to the kinetic and kinematic parameters obtained in the 6MWT, stride
length and pace were the kinematic variables that showed the greatest correlation with
the acceleration tests, jump tests, and TUG (r/Rho= 0.627–0.896, p ≤ 0.01, and high–very
high). Figure 3 shows the results of the correlations between the stride length and accel-
eration in 20 m (Figure 3A), CMJ (Figure 3B), COD505 (Figure 3C), and TUG (Figure 3D).
On the other hand, the cadence in the 6MWT correlated significantly and moderately high
(r/Rho= −0.569–0.421; p ≤ 0.05) with the acceleration, jump, and TUG variables. Like-
wise, Pmaxabs and Pavgabs were the kinetic variables that obtained the highest correlation
(r/Rho = −0.610–0.482, p ≤ 0.01, and moderate–high) with most of the tests. Finally, the
Pminrel and Pminabs showed significant but low–moderate correlations with some of the
acceleration, TUG, and balance tests (r/Rho= −0.431–0.441; p ≤ 0.05).
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4. Discussion
The primary objective of this study was to analyze the validity and reliability of a test

battery designed to assess functional capacity in older adults with disabilities or functional
limitations. Despite numerous studies that have addressed the analysis of PF in individuals
with disabilities, there is a notable lack of standardized tests specifically designed to assess
their PF [18]. The EFEPD-1.0 battery demonstrated reliability ranging from moderate to
almost perfect in most of the tests. However, the differences found between the first and
second repetitions (R1 and R2) in some tests suggest the need for adequate familiarization
of the subjects with the test protocols beforehand. Additionally, significant differences were
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observed between men and women in most tests of the EFEPD-1.0 battery, highlighting the
discriminatory capability of this test battery. Lastly, significant correlations were observed
between the various tests of the battery. These findings support the idea that the EFEPD-1.0
battery can be a tool to assess the functional capacity of adults with disabilities.

While the results of the present study highlight the validity and reliability of the
EFEPD-1.0 battery, it is essential to acknowledge the limitations inherent to the diversity of
the analyzed sample. Although the battery has been designed to be applicable to a wide
range of individuals with disabilities, the results suggest the need for specific modifications
based on the participants’ individual capacities. For instance, alternative tests or adapted
versions may be necessary for individuals who are unable to perform certain evaluations
due to physical or cognitive restrictions.

Various studies have shown that most research on the functional capacity of individu-
als with disabilities has focused on the execution of a series of tests and on the description
of the PF data obtained, without having conducted a prior evaluation of validity and
reliability [19,37]. Moreover, the use of various test batteries has created difficulties in the
interpretation and comparison of data obtained in different studies. Many of these batteries
are adaptations of tests intended for non-disabled individuals, with limited evaluation in
terms of validity and reliability [19], specifically for individuals with disabilities. Due to
these limitations, some authors have recently emphasized the urgent need for a battery
specifically designed for adult individuals with disabilities that is valid and reliable [21,22].
In the present study, the tests of the EFEPD-1.0 battery showed good reliability values
between repetitions (ICC > 0.81), although in the case of the OLS test, the data obtained
were somewhat lower (ICC = 0.65–0.71). Generally, the reliability results obtained were
similar [30] or even better [21,24,47] than in previous studies with tests or trials of a similar
nature to those included in the EFEPD-1.0 battery. Although the intraclass correlation
coefficients between the first and second repetition (R1 and R2) were good in the HG,
TUG, 30CTS, sprint COD505, and OLS tests, significant differences in values obtained by
participants were observed. These differences between R1 and R2 results may be due to
the need for greater familiarization with the protocols by the participants. Although prior
familiarization was conducted, adults with disabilities participating in this study might
require a more detailed explanation and a more profound and thorough experience of the
tests. The differences between R1 and R2 could also be attributed to problems in under-
standing and functional execution of the tests due to their disability [19]. As suggested by
Cabeza-Ruiz et al. [21], more thorough and complete familiarization could reduce these
differences and thus improve the reliability values of the EFEPD-1.0 battery.

The differentiated analysis by sex in functional tests for individuals with disabilities
has been described as crucial due to inherent variations in physical capacity and responses
to rehabilitation between men and women [48]. These differences can significantly influ-
ence the assessment and the design of personalized intervention programs [49]. Previous
studies indicate that there is notable heterogeneity in the functional profile and motor per-
formance between men and women with disabilities [50], which highlights the importance
of adopting differentiated approaches to enhance the quality of life and well-being [51].
In the present study, it was observed that men with disabilities achieved better results in
the CMJLeft and in both HG evaluations (neuromuscular capacity measurements), while
women performed better in the OLSRight (balance). These results are consistent with previ-
ous research where significant differences were observed between men and women with
disabilities in tests, such as HG and CMJ [52]. Regarding the results obtained in the 6MWT
test (cardiovascular capacity), considering that the group of women showed higher heart
rates and power without achieving higher distances compared to the group of men, it
appears that the group of women requires greater physiological and mechanical effort
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to perform the same effective work, denoting lower motor efficiency. These differences,
especially in neuromuscular and cardiovascular capacity, could be attributed to several
factors. There is a significant difference in muscle mass and body composition between
men and women, as occurs in other population groups [53], which affects the ability to
generate force and cardiovascular performance. Furthermore, the lower neuromuscular
and cardiovascular capacity of women may be due to women with disabilities possibly
presenting greater functional deterioration compared to men [52], directly affecting physical
performance, in this case neuromuscular and cardiovascular capacity. In this regard, the
current battery shows a significant capacity to discriminate between men and women with
disabilities, based on the differences observed in various functional capacity parameters.
Considering the results, the implementation of physical exercise programs for the devel-
opment and/or maintenance of physical fitness and functionality related to health from a
gender perspective may be highly relevant. In this regard, emphasis on improving strength
and cardiovascular capacity could be considered for women with disabilities, as decreased
functional capacity can negatively affect their quality of life [9].

Understanding the correlations between different tests can be fundamental to assess
how various capacities may influence each other in individuals with disabilities. This
understanding not only allows for the identification of areas of strength and weakness in
individuals but also can contribute to the creation of more effective intervention strategies.
Additionally, in cases where there is limited time to administer the tests, the most represen-
tative ones can be selected, as they indirectly provide information about the other tests. In
the present study, significant correlations (from moderate to almost perfect) were observed
between the acceleration tests, the jump tests, and the TUG, as well as between the HGLeft,
HGRight, and OLSLeft with the results of the acceleration and jump tests. Along the same
line, previous research observed significant correlations between variants of the TUG and
the OLS in individuals with disabilities [54], between linear speed tests (sprint—10 m) and
change of direction (COD505) in adults with cerebral palsy [16], and between grip strength
and different measures such as force, speed, and power of the jump in older adults [55].
Possibly, the functional tests included in the EFEPD-1.0 battery are interconnected due to
the similarity in the capacities they assess (physical or motor functionality). Many of these
tests require neuromuscular, coordination, and balance capacities, which are manifested
jointly and are interrelated, affecting the final performance in the different evaluations.
For example, explosive strength and muscular power are crucial both for the jump tests
and for the speed tests [56]. Similarly, the ability to generate force quickly, necessary for
good performance in the sprint and vertical jump, may explain the correlations observed
between tests like the 0–20, CMJ, SBJ, and TUG. Another possible explanation is that the
different functional capacities have a similar evolution in this population. In older adults
with disabilities, good strength capacity may be related to other functional capacities due to
a concurrent development of these skills over time. This means that individuals with high
strength capacity may also show good performance in other functional areas due to similar
adaptation in these capacities [55]. The presence of significant correlations between the tests
has important implications for the validity of the battery. These associations suggest that
the battery consistently and coherently measures the functional capacities of older adults
with disabilities. The validity of a test can be evaluated, in part, by the correlation between
different tests that assess related aspects of functional capacity [57]. If the tests present
adequate correlations among themselves, it can be an indication that they are measuring
similar components, an aspect that reinforces the convergent validity of the battery [58].

Although the 6MWT has been widely used in the scientific literature to measure
cardiovascular capacity in various populations, including individuals with obesity [59],
older adults [60], and individuals with various disabilities [36], so far, few studies [61] have
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analyzed whether other capacities could influence performance in the 6MWT in individuals
with disabilities. The results obtained in the present study showed large and very large
correlations between the distance covered in the 6MWT and the acceleration tests, the jump
tests, the TUG, and the balance tests and moderate and large correlations between the stride
length in the 6MWT and the 20 m acceleration, the CMJ, the COD505, and the TUG. These
results are consistent with previous research in which a significant correlation was observed
between the distance covered in a walking test and the TUG (r = −0.59 and p < 0.05; Pedrosa
and Holanda [62]), between the HG and the distance covered in the 6MWT in patients with
COPD (r = 0.56 and p < 0.001; Kovařík et al. [61]), and in older adults (r = 0.5–0.6 and p < 0.05;
Reis et al. [63]). These results indicate that functionality in the 6MWT is closely associated
with the acceleration capacity, the strength of the lower limbs, and the results obtained in the
TUG. Consequently, an effective strategy to improve cardiovascular capacity in individuals
with disabilities might focus on strengthening these specific capacities. This improvement
in acceleration capacity and muscle strength in the lower limbs, along with optimization of
the TUG times, could facilitate more efficient displacement over long distances, which in
turn would have a positive impact on daily functionality and the quality of life of these
individuals. This approach suggests that intervention in multiple functional domains
may be key to achieving substantial improvements in the overall health and well-being
of individuals with disabilities. Finally, the potential value of utilizing machine learning
algorithms for the prediction of states and the enhancement of functional capabilities in
individuals with disabilities is a promising avenue for future research, given the efficacy
demonstrated by such methods in predicting user states and enhancing functional abilities
in people with disabilities [64].

5. Conclusions
The present study aimed to design and evaluate the validity and reliability of a func-

tional test battery for individuals with disabilities or functional limitations. The results
demonstrate that the EFEPD-1.0 battery is a valid and reliable tool for assessing functional
capacity in this population. Convergent validity was evidenced through significant correla-
tions between tests (speed and jump), indicating that these tests assess related capacities or
similar constructs. On the other hand, the analysis of discriminant validity revealed signifi-
cant differences in several tests, demonstrating the battery’s ability to discriminate between
men and women. Regarding reliability, most tests showed high consistency, although some
observed differences between repetitions indicate the need for greater familiarization with
the protocols before their application. On the other hand, an effective strategy to improve
functionality in individuals with disabilities could focus on strength training. Nonetheless,
the sample, despite its heterogeneity, was modest in size and lacked representation of all
possible disabilities, ages, and ethnic groups. Consequently, further studies focused on
analyzing discriminant validity between different subgroups would be beneficial, as well
as to further refine the battery and improve its applicability and reliability.
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